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Thermodynamic  models of w e t - s n o w  
accret ion:  axial g rowth  and liquid w a t e r  
content  on a fixed conductor  
G. Poots  and P. L. I. Skelton 
Centre for Industr ial  App l ied  Mathemat ics,  Universi ty of Hull ,  Hull ,  UK 

For wet-snow accretion on overhead line conductors, occurring at positive air 
temperatures, the liquicl water content of the snow matrix controls the strength of the 
capillary forces, promoting contact between ice granules, which leads to ice bonding. 
During this process of metamorphosis, the liquid water content of the snow matrix 
increases with time and, on reaching a level of 20-40 percent, the internal cohesive forces 
are greatly weakened, causing shedding of the accreted snow by aerodynamic and 
gravitational forces. The purpose of this paper is to construct thermodynamic models of 
wet-snow accretion, by axial growth on a fixed conductor, which estimate the liquid 
water content during the accretion process. The models depend upon assumptions 
concerning the wet-snow accretion factor, namely the proportion of mass of a snowflake 
that adheres on impact with the snow/conductor surface. Models are formulated assuming 
either that the accretion factor is constant or that it obeys a cosine law (adhesion 
proportional to the cosine of the angle between the impacting snowflake trajectory and 
the normal to the surface). A differential equation governing the variation of the liquid 
water content with deposit time is derived and solved numerically. Solutions of this 
equation are also obtained using analytical solutions of the evolution equation based on 
the assumption that the trajectory paths of snowflakes are rectilinear. For a range of 
meteorological conditions, critical cohesive "precipitation--air temperature" criteria are 
established for wet-snow shedding, leading to quantitative information on the sawtooth 
transient wet-snow loading of an overhead line conductor. 
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I n t roduct ion  

Wet-snow accretion occurs on overhead line conductors at air 
temperatures just above freezing. When a snowflake, which is 
a mixture of air, water, and ice at fusion temperature, hits the 
conductor/snow surface it may fragment, with some of the 
fragments adhering to the conductor and the remainder 
ricocheting into the airstream (see Wakahama et al. 1977). 
During the accretion process, the wet snow undergoes a rapid 
process of metamorphosis in which the fragments form a snow 
matrix, held together by capillary forces and ice bonding. The 
strength of these interna]~ forces depends upon the liquid water 
content (LWC) of the snow matrix. Admirat et al. (1998a) 
suggest that if the LWC is greater than 40 percent, these forces 
are greatly reduced so that the snow deposit, is shed because 
of aerodynamic and gravitational forces. 

In Poots and Skelton (1994a), approximate analytical models 
for the prediction of LWC for axial and cylindrical sleeve 
growth were presented. These models are based on the earlier 
thermodynamic model of Grenier et al. (1986) for the prediction 
of LWC during cylindrical sleeve growth. In the analytical 
studies, the large relaxation time approximation of Poots and 
Rodgers (1976) was invoked, namely that the trajectory paths 
of snowflakes are rectilinear (see Wakahama et al. 1977). 
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During axial growth, when a snow root exists on the conductor, 
the conductor can be either thermally insulated, thus playing 
no part in the heat balance for the determination of the LWC, 
or it can transfer heat from the warm air to the snow root by 
conduction. 

It is the purpose of this paper to present a numerical study 
of thermodynamic models for the prediction of LWC during 
axial growth on a fixed conductor. For a range of 
meteorological conditions yielding temporal limiting values of 
the LWC (say 40 percent), critical cohesive "precipitation--air  
temperature" criteria are established that control wet-snow 
shedding and provide quantitative information on the transient 
sawtooth wet-snow loading of overhead line conductors, as 
observed in field measurements. This two-dimensional (2-D) 
numerical study is relevant to the prediction of LWC on a 
conductor of finite span and finite torsional stiffness, thus 
accounting for the effects of conductor rotation and the 
progressive formation of cylindrical sleeve growth across the 
span of the conductor. The first step in the construction of 
thermodynamic models of LWC during axial growth is to list 
the approximations invoked. These are as follows: 

(1) It is assumed that snowflakes are at the fusion temperature 
Tp and possess the following liquid water content: 

? = 0.04TJ (1) 

for air temperature Tae[0, 5]°C, (see field studies of 
conditions in Japan and France by Admirat et al. 1988b). 

(2) It is assumed that the snowflake fragment adhering on 
impact contributes to the growth rate at the point of impact. 
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The accretion factor a, or proportion of snowflake mass 
that adheres after impact, is either taken as constant in the 
following global form: 

a = ao (2) 

or in the following local form: 

a = a o cos q~ (3) 

where ~ is the angle between the snowflake trajectory and 
the normal to the surface at the point of impact, namely 

~b = cos - l (vy-n~  (4) 
\ Ivsl/ 

and v s is the snowflake velocity vector, and n is the outward 
unit normal to the surface. 

Numerical and analytical (LRTA) solutions of the 
nonlinear evolution equation for wet-snow accretion, 
assuming cosine law (Equation 4) for snowflake adhesion, 
are available in Poots and Skelton (1994b); these theoretical 
solutions predict snow profiles in exact agreement with the 
field observations of Tunstall and Koutselos (1986). 

In general, 

o" 0 = ao(ro; U, G, Ta, Hr) (5) 

is a function of the conductor radius ro(m ) and the 
meteorological variables: wind speed U(ms-1); liquid 
water content of the air G = P/(3600 x Vr)(kg m -  3), where 
vr(m s -~) is the terminal speed of an average sized 
snowflake at precipitation rate P(mm(H20)h-~); relative 
humidity Hr. To date, Sakamoto and Miura (1993) have 
established that the accretion factor decreases as the wind 
speed increases, achieving a maximum value in the air 
temperature range T, ~ [0, 210C. 

(3) Theoretical relationships for the density of wet snow, as a 
function of the meteorological parameters U, P, Ta, Hr, are 

not available. In a thermodynamic simulation of wet-snow 
accretion on a conductor under wind-tunnel conditions, the 
observations of Sakamoto et al. (1988) show that the density 
of the snow sleeve increases with increasing wind speed, 
increasing the precipitation rate delays metamorphosis 
(decreasing the density), while increasing the air tempera- 
ture transforms ice crystals into spherical granules, yielding 
a more compact snow matrix (increasing the density). From 
field measurements in Japan and France by Admirat et al. 
(1988b), the recommended density relationship for France 
is as follows: 

p= = (100 + 20U)(kg m -3) (6) 

and this relationship is assumed in the present investigation. 
(4) It is assumed that the snow matrix is at fusion temperature 

Tr. 
(5) The physical properties of wet snow are currently under 

investigation. In particular, in the measurement of LWC, 
Brun et al. (1988) report that it is difficult to collect a 
homogeneous snow sample at a specified value of the LWC. 
Moreover, it is observed that the LWC of the snow matrix 
for snow accreted on a conductor is not uniformly 
distributed, especially when the density of the accreted snow 
is relatively low (p~ < 400 kg m -3) (see Sakamoto et al. 
1988). Thermodynamic models of LWC in accreted wet 
snow on conductors are based on a global energy balance 
for the snow/air and snow root surfaces. Consequently, in 
the theoretical models of Grenier et al. (1986) and Admirat 
et al. (1988a), the accretion process is assumed to be 
quasi-steady, and the models predict a mean value for the 
LWC. It is further assumed that the ice/water composition 
of the air/snow surface can be deduced using the mean value 
for the LWC. 

The next step in the construction of the thermodynamic 
model is to identify the heat and mass transfer processes in the 

Notat ion 

Bi Biot number for conductor 
c, specific heat of air, J kg-  ~K- 
c o specific heat of conductor, J kg- 1 K-  1 
el saturation vapour pressure over ice, kPa 
ew saturation vapor pressure over water, kPa 
G liquid water content per unit volume of air, kg m -3 
/~ average surface heat transfer coefficient, W m-  2 K  - 1 
H o atmospheric pressure, kPa 
Hr relative humidity 
K a thermal conductivity of air, W m-  ~ K -  
Ko thermal conductivity of conductor, W m-  ~K- 
L E latent heat of evaporation, J kg- 
LF latent heat of fusion, J kg- 
L s latent heat of sublimation, J kg- 
M snow load per unit length, kg m -  
n outward normal on snow surface 
no outward normal on conductor surface 
Nu Nusselt number 
P snow precipitation rate, mm(H20 ) h -  
q dimensionless heat flux 
Q heat flux, W m-2 
r radial polar coordinate, m 
R dimensionless radial polar coordinate 
Re Reynolds number for conductor 

ro 
s 

t 

T 
L 
rr 
To 
U 
Vf 

/)T 
(x, y) 

radius of conductor, m 
perimeter of snow surface, m 
time, s 
dimensionless accretion time 
ambient air temperature, °C 
fusion temperature, °C 
conductor temperature, °C 
wind speed, m s- 1 
velocity of average sized snowflake, m s-  1 
terminal speed of average sized snowflake, m s-  x 
Cartesian coordinates, m 

Greek symbols 

y LWC of snowflake 
qa viscosity of air, Nsm-2 
0 angular polar coordinate 
00 angular location of upper grazing trajectory 
® dimensionless temperature of conductor 
A LWC of snow matrix 
v, kinematic viscosity of air, m 2 s-  l 

Pa density of air, kg m -  3 
p~ density of snow matrix, kg m - s  
a accretion factor 
z dimensionless time in cooling period 
q~ angle of impact 
Zi heat transfer parameter for ice 
Zw heat transfer parameter for water 
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early stages of snowflake impaction. When the conductor 
surface is insulated, there is no problem because accretion can 
take place instantaneously on snowflake impact. In general, at 
the onset of the snow storm, the conductor temperature T O = T~ 
and hence accretion cannot take place on the windward face 
of the conductor until the surface has cooled down to Tr = 0°C. 
The mechanism for this cooling, which takes place on the 
conductor surface (or snow root) between the location of the 
grazing trajectories of an average sized snowflake, is to assume 
that if To > Tr, all of the adhering snow melts. It is further 
assumed that accretion cannot take place on the snow root 
surface until this part of the conductor surface is at fusion 
temperature, This latter assumption is equivalent to the 
assumption that the conductor has reached a steady-state 
temperature before accretion can commence. 

In the next section, the cooling down process of the 
windward face of the conductor is formulated. Employing a 
heat balance to supplement the equations governing the 
evolution of the snow s,rface, a differential equation for the 
prediction of the mean value of the LWC for the snow matrix 
is formulated. Then follows a section on results on LWC for 
different thermodynamic models, giving some preliminary 
thoughts to a quantitative understanding of snow shedding in 
relation to LWC. 

Cooling of t h e  w i n d w a r d  face of the conductor 

The thermal response of the conductor, caused by heat loss on 
the melting of adher:ing snowflake fragments and by 
evaporation at the resulting wet surface, is governed by the 
following equations (see Figure 1): 

~To 
KoV2T0 = poCo ~ ,  r < ro, 0e[0,  2n] (7) 

subject to the following initial condition: 

T o = T , ,  r <_ ro, t = 0  (8) 

and for t > 0  on the snow-root surface ~1: r = r o ,  
0 • [0o, 2n - 0o], 

KoVTo" no = h(T~ - To) -- (1 - ~)G(- v I • n0)~ - zwAe~ (9) 

and on the conductor/air surface ~o: r = r o, 0e [0, 0o], and 
0 e [2n - 0o, 2n], 

K o V T  o "n o = h(T~ - To) (10) 

In the system of Equations 7-10 Ko(Wm-~K-I ) ,  
po(kgm-3), and Co(Jkg-XK -1) denote the thermal con- 
ductivity, density, and specific heat of the conductor, 

F~JONFL&KE > 
TRAJECTORY 
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> 
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LOCATION ON A BARE 

Figure I Schematic diagram of wet-snow impaction 

respectively; h(W m-1K-1)  is an average surface heat transfer 
coefficient for the system; Le(Jkg -1) is the latent heat of 
melting ice; e(T)(kPa) is the saturation vapour pressure at 
temperature T; no is the unit vector normal to the conductor 
suface; and in polar coordinates (r 0, 0o) is the location of the 
upper grazing trajectory of an average sized snowflake. 

In the heat balance (Equation 9) for heat loss at the 
snow-root, the deficit in saturation pressure over water is as 
follows: 

Aew = e j T a )  - eJTF)  (11) 

Polynomial expressions for the saturation pressure ew (over 
water) are available in Lowe (1977), and, moreover, application 
of the heat and mass transfer analogy of Chilton and Colburn 
(1934) yields the following: 

Zw = 0.622hL~ Hr / caHo  12/3 (12) 

where LE(J kg-1) is the latent heat of evaporation of water; 
c=(Jkg-lK -1) is the specific heat of air; Ho(kPa) is the air 
pressure; and I = 0.875 is the Lewis number. Szilder et al. 0988) 
provide heat transfer data relevant to snow cylinders in the 
form of the following average heat transfer coefficient: 

f~ -- N----uKa/2r o (13) 

The length scale of the accretion was taken as the diameter 2ro 
of the conductor and recommended values of the average 
Nusselt number Nu are given as follows: 

N--u = 0.117Re °'68, Re = 2roU/v  a (14) 

for the Reynolds number range Re E [(1.5 x 104), (1.7 x 105)]. 
In the above, K=(W m - l K  -~) and v,(m 2 s -1) are the thermal 
conductivity and kinematic viscosity of air, respectively. 

Let the steady-state temperature distribution for the cooling 
down period be reached at time t = to; this is taken to be the 
time at which the mean value of the temperature over the 
snow-root surface is T O = 0.01°C, say. Thus, for t > to, it is 
assumed that a steady-state temperature exists within the 
conductor because the snow root is now covered with wet snow 
at TF = 0°C. Further details concerning the solution of the 
above heat conduction problems and the evaluation of the heat 
flux at the snow root for t > to are given in the Appendix. 

Determination of LWC during wet -snow 
accretion 

In Poots and Skelton (1994a) a differential equation was 
formulated for determining the LWC for the two limiting 
modes of accretion; namely, axial growth and cylindrical sleeve 
growth. On assuming that the accretion factor a =  tro 
(constant) and that snowflake trajectories are rectilinear 
(LRTA), analytical solutions were presented. It is known that 
the collection efficiency of the wet-snow profile decreases with 
time, so a numerical study for the prediction of LWC is 
undertaken. In the following, numerical solutions for the 
accretion process (see Skelton and Poots 1991 and Poots and 
Skelton 1994b) are employed to predict LWC, assuming a is 
given by Equations 2 and 3; for completeness, in the case of 
a = a o cos ~b, analytical solutions for the LWC are obtained 
on using the LRTA analytical predictions for wet-snow growth, 
as given in Poots and Skelton (1994b). 

The liquid water content of the snow matrix is denoted by 
A. The net increase in liquid water content is attributable to 
the melting snow matrix by snow surface heat transfer (air and 
root surfaces ~2 and ~ ,  respectively); this is given by 
( A -  7)M(t), where M(t)  is the mass of wet snow deposited 
during time t. Heat is gained by the snow matrix by convective 
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heat transfer at the snow/air surface. 

Q2 = h(Ta - -  Tr)s (15) 

where s is the perimeter of the snow surface ~2 (see Figure 1). 
Heat lost by evaporation and sublimation at the snow/air 
boundary cg 2 is given by the following: 

Qs = [(1 - A)ziAei + AzwAew]s (16) 

see assumption (5). Here, the deficit in saturation pressure over 
ice is as follows: 

Ae i = ei( T.) - ei( Tr) (17) 

and 

Zi = 0.622hL~ Hr/% H o l 2/3 (18) 

where Ls(J kg- ~) is the latent heat of sublimation. 
The rate of production of melt water within the snow matrix 

is given by the following: 

d 
Lv dt [(A - 7)M(t)] = Qt + Q2 - Q3 (19) 

where Q1, Q2, and Q3 are given by A8-A9, A15, and 
A16, respectively. Following Poots and Skelton (1994a), 
introduce the following dimensionless accretion time 

T =  aoGUt/p:o  (20) 

and the (convenient) dimensionless heat transfer groups 

6 = {h(T~ - TF) -- z,Ae,}/aoGULF (21) 

e = -- {XwA% - xiAel}/aoGUL v (22) 

= h(T~ - Tv)/aoGUL v (23) 

The governing equation for the LWC transforms to the 
following: 

d [ M(T)  1 s 
dr+ (A - 7) P ' r °  2 _] = ~ql + (6 + Ae) ro-- (24) 

and depends upon the accretion kinetics: the dimensionless 
snow load M ( T ) / p :  g, the dimensionless snow/air perimeter 
length s/ro, and the dimensionless heat flux ql at the snow root 
(defined in the Appendix). If the accretion process commences 
at T - o o G U ( t -  to)/P:o = 0, the initial condition for the 
solution of Equation 24 is as follows: 

A(0) = 7[(.~I(O)/p~r 2) + ctql + 3(s(O)/ro)]/ 

[]('l(O)/p: g - e(s(O)/ro)] (25) 

where the overdot denotes d/dT. Initially the dimensionless 
snow/air perimeter is 

s(O)/r o = 2(n - 0o) (26) 

and the rate of mass accretion is evaluated from the mass 

transfer balance 

M(0) t ~ "-°°° v:. 
p,r~ -- Joo ao ( - -  U no) dO 

(27) 

Numerical solution of the LWC equation 

The input functions M(T)/psr 2 and s(T)/r o are complex 
functions of T and, in general, are available on the numerical 
solution of the system of nonlinear partial differential equations 
that govern the snow-accretion kinetics (see Skelton and Poots 
1991). For this reason, the LWC Equation 24, subject to 
Equation 25, is solved by standard predictor-corrector 
methods. Procedures for the calculation of M(T)/p ,r  2 and 
s(T)/r o are available in Skelton and Poots (1991) for accretion 
factor a = %, and in Poots and Skelton (1994b), for the cosine 
law accretion factor tr = ao cos ~b. Illustrations of the transient 
behaviour of the LWC during accretion and its sensitivity with 
respect to meteorological parameters are now discussed. 

Results and Discussion 

The physical properties of the snow/conductor system are listed 
in Table 1. Properties of the average sized snowflake, such as 
snowflake mass, snowflake size, and snowflake drag coefficient, 
as a function of meteorological conditions, are available in 
Skelton and Poots (1991). Therefore, as to present illustrations 
in real time, the accretion constant no, given in Equation 5, 
is taken as unity. Its actual value for UK meteorological 
conditions remains to be determined on calibration of the 
wet-snow predictions of the theoretical model with field 
measurements, historical weather, and snow-load data. 

For a constant accretion factor a0, the LWC is displayed in 
Figure 2 for a 2-hour snow storm for which T, = I°C, 
P = 1.0 mm(H20 ) h-  x, U = 5 m s- l, and Hr = 0.95. When the 
conductor is thermally insulated, so that at the snow root 
q~ = 0 in Equation 24, there is excellent agreement between 
the values of the LWC calculated using the numerical method 
compared with the analytical solution based on the LRTA (see 
Poots and Skelton 1994a). When the conductor is noninsulated, 
so that heat is transferred by conduction from the warm air to 
the snow root (ql :# 0), the agreement between predicted values 
of the LWC using the numerical and analytical models are 
within 4 percent at the end of the 2-hour period. Note that, in 
these models, the effect of heat transfer across the conductor 
is to cause a significant increase in the LWC. Moreover, it has 
been established that the effects of varying meteorological 
parameters T,, P, and U on the LWC for the insulated 
conductor are not appreciable; therefore, in the following, the 
discussion concentrates mainly on the more realistic case of 
the noninsulated conductor. 

Table 1 Physical properties 

Conductor  Air 

Density p, kg m - 3  2.937 x 1 0  3 1.3 
Specific heat c, J k g - l k  -1 9.0 × 102 1.006 x 103 
Thermal conduct iv i ty  K, W m -1K -1 4.0 2.42 x 10 -2  
Radius of conductor  r o, m 1.863 x 10 -2 - -  
Kinematic viscosity v, m 2 s - 1  - -  1.36 x 10 -5  

Latent heat of evaporation LE, J kg -1 2.51 x 10 e 
Latent heat of fusion LF, J kg -1 3.25 x 10 s 
Latent heat of sublimation Ls, J kg -1 2.835 x 108 
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Figure 2 Liquid water content (LWC) of snow deposit for constant 
accretion factor; solid line. numerical; dashed line, analytical 
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Figure 4(a) LWC of snow deposit for various air temperatures 
using the analytical model for the cosine law 
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Figure 3 LWC of snow deposit for cosine law accretion factor; 
solid line, numerical; dashed line, analytical 

In Figure 3, predictions for the LWC are given for the cosine 
law accretion factor a =- a o cos ~b; the duration and meteor- 
ological variables for the snow storm are as in Figure 2. In this 
case, the numerical model is known to develop numerical 
instabilities after the first hour; the reason is that the radius of 
curvature of the snow profile at the stagnation line rapidly 
tends to zero with increasing time. For the insulated conductor, 
as in Figure 2, the agreement between the LWC calculated 
using the numerical and analytical models is excellent; here, 
use of the term "analytic~,l model" is to indicate that analytical 
solutions are known (see Poets and Skelton 1994b), for the 
wet-snow accretion kinetics for all time. For  the noninsulated 
conductor the difference in predictions for LWC in the first 
hour using the numerical and analytical models is, again, more 
pronounced than for the insulated conductor. In the numerical 
model, both the mass of snow accreted and the perimeter of the 
air/snow surface are less than in the analytical model (LRTA). 
However, the heat flux into the snow root 0~(0o, 2~ - 0o) for 
the numerical model is greater than for the analytical model 
O e(n/2, 3n/2), and it is this latter feature that dictates the 
difference in LWC between the two models. In the numerical 
model, the LWC is 26 percent initially, increasing in just one 
hour to a critical level of 33 percent, at which snow shedding 
may occur. 

The analytical model for the cosine law of accretion is used 
to illustrate the effects of varying the meteorological conditions 
To, P, U, and Hr, see Figure 4(a,b,c). Figures 4(a), for 
P = 1.0 mm(H20 ) h -  1, U = 5 m s -  1, and Hr = 0.95, shows, 
for a 2-hour period, the increase in LWC due to increasing the 
air temperature T=; clearly, for T= = 2.5°C, the LWC reaches 
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Figure 4(b) LWC of snow deposit for various wind speeds using 
the analytical model for the cosine law 
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Figure 4(c) LWC of snow deposit for various precipitation rates 
using the analytical model for the cosine law 

40 percent in the first hour and, in this context, it should be 
remembered (see Figure 3) that the LWC is always 
underestimated by the analytical model. In Figure 4(b), for 
T, = 1 °C, P = 1.0 mm(H20) h -  1, and Hr = 0.95, it is seen that 
the effect of increasing the wind speed is to decrease the LWC. 
Finally, in Figure 4(c), a similar trend is established, for 
T= = I°C, U = 5 m s-1, and Hr = 0.95, when the precipitation 
rate P is increased. In conclusion, a rise in air temperature, as 
expected, raises the LWC while LWC is decreased when either 
the wind speed or precipitation is increased. 
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It is now understood that the LWC of the snow deposit 
controls its mechanical cohesion. When LWC increases, the 
internal cohesive forces (capillary force, ice bonding) decrease, 
and for some maximum size of deposit, the external 
aerodynamic and gravitational forces overcome the internal 
forces so that the snow sleeve breaks up or separates from the 
conductor. This relationship between maximum size and LWC 
is not understood: all that is known is that the maximum size 
adhering to the conductor decreases rapidly as LWC increases 
(see Admirat et al. 1988a). In Figure 5, the cohesive ( P -  To) 
limits are given for a LWC of 40 percent at the onset of 
accretion and at the end of a 1-hour period. Thus, for a fixed 
air temperature To and a fixed wind velocity U, the cohesive 
(P - T~) limits give the critical value of Pc to yield LWC = 40 
percent: if P > Pc, accretion will continue; whereas, if P < Pc, 
LWC > 40 percent, and, by implication, the deposit is shed. 

Knowing the critical value of the precipitation rate P for 
fixed To, U, the corresponding mass M(T~, P, U, t) can be 
computed; equally well, the size of the accretion represented 
by the axial length of the deposit, measured from the snow root 
to the forward stagnation line, can be deduced, if required. In 
Figure 6 the snow load corresponding to the cohesive (P - TO) 
limits is shown for 40 percent LWC existing at the end of a 
1-hour snow storm; the critical snow load increases with 
increasing wind speed. 

It is assumed, once the 40 percent LWC level is reached, 
that the snow deposit is shed, then the transient snow 
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Figure 5 Cohesive ( P -  Ta) limits for LWC of 40 percent at t = 0 
and t = 60 min using the analytical model for the cosine law 
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Figure 7 Snow load: accretion and shedding at LWC of 40 percent 
using the analytical model for the cosine law: (a) (T a, P, U, 
Hr) = (1,31,1.0, 5, 0.95); (b) (Ta, P, U, Hr) = (2.53, 10.0, 5, 0.95) 

loading on the conductor will be of the sawtooth form. 
Some preliminary results illustrating this form of wet-snow 
growth are given in Figures 7(a,b), respectively, for the two 
critical cases at one-hour: (P, To, U, Hr) = (1.0, 1.31, 5.0, 0.95) 
and (10.0, 2.53, 5.0, 0.95). In this way the thermodynamic model 
for the prediction of LWC during axial growth can provide 
useful quantitative information on wet-snow shedding. 

For a conductor of finite span and finite torsional stiffness, 
it is known that conductor rotation, caused by snow and 
aerodynamic torques (see Skelton and Poots 1991), controls 
the extent of snow loading and its mode of growth across the 
span (axial growth near the tower changing progressively to 
cylindrical sleeve growth at the center of the span). The results 
of the present 2-D, time-dependent study of LWC during axial 
growth underlines the dependence of wet-snow growth and 
shedding on this thermodynamic variable. These results should 
prove useful on undertaking a three-dimensonal (3-D), 
time-dependent study of snow load and LWC across a 
conductor span. 

C o n c l u s i o n  

Thermodynamic models have been developed for the prediction 
of the LWC of the snow matrix during axial growth of wet 
snow on a fixed conductor. Results have been obtained by 
numerical and analytical methods for the accretion factor taken 
as a constant or for the accretion factor obeying a cosine law, 
the latter being postulated so as to predict snow profiles in 
agreement with the UK field observations of Tunstali and 
Koutselos (1986). Preliminary results of critical cohesive 
"precipitation-air temperature" limits are obtained for the 
LWC level of 40 percent, indicating snow shedding. 
Quantitative information is also given on the role of the 
thermodynamic variable LWC on sawtooth growth during 
wet-snow accretion. 

A c k n o w l e d g m e n t  

Figure 6 Snow load corresponding to cohesive ( P -  Ta) limits at 
t = 60 min for LWC of 40 percent using the analytical  model  for 
the cosine law 

The authors are indebted to the National Grid Company for 
supporting this research, which is published by permission of 
the National Grid Company. 
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Appendix.  Cooling of  the w i n d w a r d  surface 
of the  conductor ,  heat f lux at the snow root 

In t roducing  the dimensionless  variables 

r vy K o t  T O - T F 
R = - - ,  V y = ~ ,  x -  , O - - -  (A1) 

r o PoCo r2 T a -- Tp 

the governing Equat ions  (7-10) t ransform to the following: 

l d f R O 0 \  1 d 2 0  coo 

9 2 0 = R O R ~ ) ~  + R  2 d0 ~ -  & 
(A2) 

subject to the following condi t ions:  

®(R, 0 , 0 ) = l ,  R _ < I ,  0 e ( 0 , 2 n )  (A3) 

for z > 0 on the root  surface ~ t  : R = l, 0 ~ (0o, 2n - 0o) 

dO(1, 0) 
B i l l  -- O(1, 0, z)] - qo (A4) 

dR 

for z > 0 on the bare  conduc tor  ego: R = 1, 0~(0,0o) ,  and  
0 e (2n - 0 o, 2r 0 

dO(l ,  O) 
: Bi[1 - O(1, 0, z)]. (A5) 

dR 

Here the conduc to r  Blot n u m b e r  and  the dimensionless heat  
flux are defined, respectively, by the following: 

Bi = hro/Ko,  qo = r°[(l  - 7 ) ( - G V f "  no)L r + XwAew] (A6) 
K o ( T ~ -  Tv) 

For  z > Zo = Koto/pocor2o, the steady-state mixed Dir ichle t -  
N e u m a n n  problem to be solved is as follows: 

~720 = 0 (A7) 

subject to the condi t ion ®(1, 0) = 0 on  ~1 and  the condi t ion 
A5 on ~o.  The above  mixed D i r i c h l e t - N e u m a n n  problems 
canno t  be solved analytically (see Sneddon  1966), but  are 
readily solved numerical ly by s tandard  finite difference 
methods  described in Smith 0965).  

For  t > t o, the heat  flux at  the snow root  ~ t  into the snow 
matr ix  is as follows: 

~ 2.-oo dO(I,  O) 
Q1 = - K o ( T ~ -  Tr) d0 (A8) 

J 0o dR 

Applicat ion of the divergence theorem to Equat ion  A7 yields 
the following: 

~ 2 x - O o  

Qt = hro(T~ - Tr)qx, ql = [1 -- O(1, 0)] dO (A9) 
,) 00 
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